Abstract
An intrinsic part of seeing objects is seeing how similar or different they are relative to one another. This experience requires that objects be mentally represented in a common format over which such comparisons can be carried out. What is that representational format? Objects could be compared in terms of their superficial features (e.g., degree of pixel-by-pixel overlap), but a more intriguing possibility is that they are compared on the basis of a deeper structure. One especially promising candidate that has enjoyed success in the computer vision literature is the shape skeleton—a geometric transformation that represents objects according to their inferred underlying organization. Despite several hints that shape skeletons are computed in human vision, it remains unclear how much they actually matter for subsequent performance. Here, we explore the possibility that shape skeletons help mediate the ability to extract visual similarity. Observers completed a same/different task in which two shapes could vary either in their skeletal structure (without changing superficial features such as size, orientation, and internal angular separation) or in large surface-level ways (without changing overall skeletal organization). Discrimination was better for skeletally dissimilar shapes: observers had difficulty appreciating even surprisingly large differences when those differences did not reorganize the underlying skeletons. This pattern also generalized beyond line drawings to 3-D volumes whose skeletons were less readily inferable from the shapes' visible contours. These results show how shape skeletons may influence the perception of similarity—and more generally, how they have important consequences for downstream visual processing.
from #ORL-AlexandrosSfakianakis via ola Kala on Inoreader http://ift.tt/2FMkJ4f
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου