Αρχειοθήκη ιστολογίου

Τετάρτη 25 Απριλίου 2018

Homologous series of n-alkanes (C19-C35), fatty acids (C12-C32) and n-alcohols (C8-C30) in atmospheric aerosols from central Alaska: Molecular distributions, seasonality and source indices

S13522310.gif

Publication date: July 2018
Source:Atmospheric Environment, Volume 184
Author(s): Suresh K.R. Boreddy, Md. Mozammel Haque, Kimitaka Kawamura, Pingqing Fu, Yongwon Kim
To better understand the molecular distributions, seasonality and source indices of organic aerosols in central Alaska, we measured homologous series of n-alkanes (C19-C35), fatty acids (C12-C32) and n-alcohols (C8-C30) in total suspended aerosols collected during June 2008 to 2009 using a gas chromatography/mass spectrometry (GC-MS). The whole sampling period was divided as warm (early May to late September; summer) and cold (late September to early May; winter) periods. Molecular distribution was characterized in both periods by the predominance of C25 for n-alkanes and C24:0 for fatty acids. However, we noticed a difference in molecular distribution of n-alcohols between warm and cold periods, which was characterized by the predominance of C22 in warm season while C26 in cold period. Except for fatty acids, n-alkanes and n-alcohols showed higher concentrations in warm period than in cold period. We found significantly higher ratios of C18:1/C18:0 in warm period than those in cold period, suggesting the fresh biogenic and aged anthropogenic aerosols in warm and cold periods, respectively. This inference was consistent with significantly higher ratios of WSOC/OC, a proxy for photochemical aging, in cold period. Based on the carbon preference index (CPI), average chain length (ACL), low-to-high molecular weight (LMW/HMW) ratios, wax n-alkanes (%WNA) and estimated fossil fuel concentrations, we demonstrate that higher plant waxes, biomass burning from wildfires are two important sources in warm period while combustion derived anthropogenic emissions are major sources in cold period in central Alaska. This finding was further supported by higher ratios of nss-K+/elemental carbon (EC) and methanesulfonate (MSA)/EC ratios in warm period.



from #ORL-AlexandrosSfakianakis via ola Kala on Inoreader https://ift.tt/2HtkYWM

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου