Abstract
Background
The non-surgical therapies of benign thyroid nodules are gaining momentum due to the possibility to reduce the nodule's volume and avoid surgery. As the last technique introduced, high intensity focused ultrasound allows the thermal tissue treatment by directing energy inside the targeted nodule with no invasive instruments. In the present study we applied the Food and Drug Administration high intensity focused ultrasound simulator to in-silico phantom to evaluate the effects obtained by different acoustic powers.
Methods
The simulated layers were water and thyroid tissue. The source was a spherically curved circular transducer with radius r = 2.3 cm generating a continuous wave beam at a frequency of 3 MHz. The focal distance was 6.5 cm. The sequence included a pulse (8 s) with acoustic power at different value from 5 to 50 W, and a cooling-off interval (32 s).
Results
The use of acoustic power of 5 W allowed to achieve the threshold of temperature for coagulative necrosis (55 °C) at 1 s. The simulation with 50 W showed that temperature was significantly higher (above 300 °C) at 1 s and is maintained at high levels for a long interval.
Conclusion
Since 2016, we treated patients according to the present experience, and a significant reduction of nodule's volume was observed with good patent's comfort and no complications (unpublished data). Also, no anesthesia was practiced. We feel that the present data could contribute to develop a high intensity focused ultrasound therapy of benign thyroid nodules free from potential complications.
from #ORL-AlexandrosSfakianakis via ola Kala on Inoreader http://ift.tt/2osVMmT
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου