Purpose: Isocitrate dehydrogenase (<IDH) mutations in glioma patients confer longer survival and may guide treatment decision-making. We aimed to predict the IDH status of gliomas from MR imaging by applying a residual convolutional neural network to pre-operative radiographic data. Experimental Design: Preoperative imaging was acquired for 201 patients from the Hospital of University of Pennsylvania (HUP), 157 patients from Brigham and Women's Hospital (BWH), and 138 patients from The Cancer Imaging Archive (TCIA) and divided into training, validation, and testing sets. We trained a residual convolutional neural network for each MR sequence (FLAIR, T2, T1 pre-contrast, and T1 post-contrast) and built a predictive model from the outputs. To increase the size of training set and prevent overfitting, we augmented the training set images by introducing random rotations, translations, flips, shearing, and zooming. Results: With our neural network model, we achieved IDH prediction accuracies of 82.8% (AUC = 0.90), 83.0% (AUC = 0.93), and 85.7% (AUC = 0.94) within training, validation, and testing sets, respectively. When age at diagnosis was incorporated into the model, the training, validation, and testing accuracies increased to 87.3% (AUC = 0.93), 87.6% (AUC = 0.95), and 89.1% (AUC = 0.95), respectively. Conclusions: We developed a deep learning technique to non-invasively predict IDH genotype in grade II-IV glioma using conventional MR imaging using a multi-institutional dataset.
from #ORL-AlexandrosSfakianakis via ola Kala on Inoreader http://ift.tt/2hOcRVu
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου