Abstract
Small-scale production poultry operations are increasingly common worldwide. To investigate how these operations influence antimicrobial resistance and mobile genetic elements (MGEs), Escherichia coli isolates were sampled from small-scale production birds (raised in confined spaces with antibiotics in feed), household birds (no movement constraints; fed on scraps), and humans associated with these birds in rural Ecuador (2010–2012). Isolates were screened for genes associated with MGEs as well as phenotypic resistance to 12 antibiotics. Isolates from small-scale production birds had significantly elevated odds of resistance to 7 antibiotics and presence of MGE genes compared with household birds (adjusted odds ratio (OR) range = 2.2–87.9). Isolates from humans associated with small-scale production birds had elevated odds of carrying an integron (adjusted OR = 2.0; 95% confidence interval (CI): 1.06, 3.83) compared with humans associated with household birds, as well as resistance to sulfisoxazole (adjusted OR = 1.9; 95% CI: 1.01, 3.60) and trimethoprim/sulfamethoxazole (adjusted OR = 2.1; 95% CI: 1.13, 3.95). Stratifying by the presence of MGEs revealed antibiotic groups that are explained by biological links to MGEs; in particular, resistance to sulfisoxazole, trimethoprim/sulfamethoxazole, or tetracycline was highest among birds and humans when MGE exposures were present. Small-scale production poultry operations might select for isolates carrying MGEs, contributing to elevated levels of resistance in this setting.from #ORL-AlexandrosSfakianakis via ola Kala on Inoreader http://ift.tt/2FaFnOq
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου