Αρχειοθήκη ιστολογίου

Τρίτη 25 Ιουλίου 2017

Delocalization of eigenvectors of random matrices with independent entries. Rudelson, M; Vershynin, R

We prove that an n by n random matrix G with independent entries is completely delocalized. Suppose the entries of G have zero means, variances uniformly bounded below, and a uniform tail decay of exponential type. Then with high probability all unit eigenvectors of G have all coordinates of magnitude O(n^{-1/2}), modulo logarithmic corrections. This comes a consequence of a new, geometric, approach to delocalization for random matrices.

from # & - All via ola Kala on Inoreader http://ift.tt/2eLlf9L

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου