Αρχειοθήκη ιστολογίου

Τρίτη 25 Ιουλίου 2017

Entropy, dimension and the Elton-Pajor Theorem. Mendelson, S; Vershynin, R

The Vapnik-Chervonenkis dimension of a set K in R^n is the maximal dimension of the coordinate cube of a given size, which can be found in coordinate projections of K. We show that the VC dimension of a convex body governs its entropy. This has a number of consequences, including the optimal Elton's theorem and a uniform central limit theorem in the real valued case.

from # & - All via ola Kala on Inoreader http://ift.tt/2h074i4

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου