Abstract
Pulmonary alveolar septa are thought to contain at least two types of fibroblasts that are termed myofibroblasts and lipofibroblasts based on their morphological characteristics. Lipofibroblasts possess cytoplasmic lipid inclusions (lipid bodies or droplets) and are involved in several important functions, such as surfactant synthesis, development, vitamin A storage and presumably regeneration. As vitamin A was shown to reduce pulmonary emphysema in several but not all mouse and rat strains, we hypothesized that these strain differences might be explained by a differential occurrence of lipofibroblasts and their lipid bodies in various mouse strains. Therefore, mouse lungs of six strains (NMRI, BALB/c, C3H/HeJ, C57BL/6J, C57BL/6N and FVB/N) were investigated by light and electron microscopic stereology to quantify the amount of lipid bodies and the composition of alveolar septa. Lipofibroblasts were observed qualitatively by transmission electron microscopy in every investigated mouse strain. The total volume and the volume-weighted mean volume of lipid bodies were similar in all mouse strains. The results on the composition of the interalveolar septa did not show major differences between the groups. The only mouse strain that differed significantly from the other strains was the NMRI strain because the lungs had a higher volume and consequently many of the morphological parameters were also larger than in the other groups. In conclusion, the present study showed that lipofibroblasts are a common cell type in the mouse lung across various strains. Therefore, the mere presence or absence of lipofibroblasts does not explain differences in the pulmonary regenerative potential among mouse strains.
from #ORL-AlexandrosSfakianakis via ola Kala on Inoreader http://ift.tt/2fo7cY0
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου