Publication date: Available online 18 January 2018
Source:Cancer Cell
Author(s): Amanda Balboni Iniguez, Björn Stolte, Emily Jue Wang, Amy Saur Conway, Gabriela Alexe, Neekesh V. Dharia, Nicholas Kwiatkowski, Tinghu Zhang, Brian J. Abraham, Jaume Mora, Peter Kalev, Alan Leggett, Dipanjan Chowdhury, Cyril H. Benes, Richard A. Young, Nathanael S. Gray, Kimberly Stegmaier
Many cancer types are driven by oncogenic transcription factors that have been difficult to drug. Transcriptional inhibitors, however, may offer inroads into targeting these cancers. Through chemical genomics screening, we identified that Ewing sarcoma is a disease with preferential sensitivity to THZ1, a covalent small-molecule CDK7/12/13 inhibitor. The selective CDK12/13 inhibitor, THZ531, impairs DNA damage repair in an EWS/FLI-dependent manner, supporting a synthetic lethal relationship between response to THZ1/THZ531 and EWS/FLI expression. The combination of these molecules with PARP inhibitors showed striking synergy in cell viability and DNA damage assays in vitro and in multiple models of Ewing sarcoma, including a PDX, in vivo without hematopoietic toxicity.
Graphical abstract
Teaser
Iniguez et al. find that inhibition of CDK12 is synthetic lethal with EWS/FLI expression. CDK12/13 inhibitors impair DNA damage repair in cells expressing EWS/FLI, and the combination of CDK12/13 and PARP inhibitors synergistically reduces tumor growth and extends survival in Ewing sarcoma mouse models.from #ORL-AlexandrosSfakianakis via ola Kala on Inoreader http://ift.tt/2DiS19S
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου