Αρχειοθήκη ιστολογίου

Τετάρτη 18 Απριλίου 2018

Fractone Bulbs Derive from Ependymal Cells and Their Laminin Composition Influence the Stem Cell Niche in the Subventricular Zone

Fractones are extracellular matrix structures in the neural stem cell niche of the subventricular zone (SVZ), where they appear as round deposits named bulbs or thin branching lines called stems. Their cellular origin and what determines their localization at this site is poorly studied, and it remains unclear whether they influence neural stem and progenitor cell formation, proliferation, and/or maintenance. To address these questions, we analyzed whole-mount preparations of the lateral ventricle of male and female mice by confocal microscopy using different extracellular matrix and cell markers. We found that bulbs are rarely connected to stems and that they contain laminin α5 and α2 chains, respectively. Fractone bulbs were profusely distributed throughout the SVZ and appeared associated with the center of pinwheels, a critical site for adult neurogenesis. We demonstrate that bulbs appear at the apical membrane of ependymal cells at the end of the first week after birth. The use of transgenic mice lacking laminin α5 gene expression (Lama5) in endothelium and in FoxJ1-expressing ependymal cells revealed ependymal cells as the source of laminin α5-containing fractone bulbs. Deletion of laminin α5 from ependymal cells correlated with a 60% increase in cell proliferation, as determined by phospho-histone H3 staining, and with a selective reduction in the number of slow-dividing cells. These results indicate that fractones are a key component of the SVZ and suggest that laminin α5 modulates the physiology of the neural stem cell niche.

SIGNIFICANCE STATEMENT Our work unveils key aspects of fractones, extracellular matrix structures that are present in the SVZ that still lack a comprehensive characterization. We show that fractones extensively interact with neural stem cells, whereas some of them are located precisely at pinwheel centers, which are hotspots for adult neurogenesis. Our results also demonstrate that fractones increase in size during aging and that their interactions with neural stem and progenitor cells become more complex in old mice. Last, we show that fractone bulbs are produced by ependymal cells and that their laminin content regulates neural stem cells.



from #ORL-AlexandrosSfakianakis via ola Kala on Inoreader https://ift.tt/2vpAP2Q

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου