Multiple epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (EGFR-TKI) have been developed to effectively inhibit EGFR-derived signals in non–small cell lung cancer (NSCLC). In this study, we assessed the efficacy of EGFR-TKIs, including a novel third-generation inhibitor naquotinib (ASP8273), in clinically relevant EGFR mutations, including L858R, exon 19 deletion, L858R+T790M, exon 19 deletion+T790M with or without a C797S mutation, and several exon 20 insertion mutations. Using structural analyses, we also elucidated the mechanism of activation and sensitivity/resistance to EGFR-TKIs in EGFR exon 20 insertion mutations. The efficacy of naquotinib in cells with L858R, exon 19 deletion and exon 19 deletion+T790M was comparable with that of osimertinib. Interestingly, naquotinib was more potent than osimertinib for L858R+T790M. Additionally, naquotinib and osimertinib had comparable efficacy and a wide therapeutic window for cells with EGFR exon 20 insertions. Structural modeling partly elucidated the mechanism of activation and sensitivity/resistance to EGFR-TKIs in two EGFR exon 20 insertion mutants, A767_V769dupASV and Y764_V765insHH. In summary, we have characterized the efficacy of EGFR-TKIs for NSCLC using in vitro and structural analyses and suggested the mechanism of activation and resistance to EGFR-TKIs of EGFR exon 20 insertion mutations. Our findings should guide the selection of appropriate EGFR-TKIs for the treatment of NSCLC with EGFR mutations and help clarify the biology of EGFR exon 20 insertion mutations. Mol Cancer Ther; 17(4); 740–50. ©2018 AACR.
from #ORL-AlexandrosSfakianakis via ola Kala on Inoreader https://ift.tt/2Edo9v0
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου