Abstract
Sporadic synchronous colorectal cancer (CRC) refers to more than one primary tumor detected in a single patient at the time of the first diagnosis without predisposition of cancer development. Given the same genetic and microenvironment they raise, sporadic synchronous CRC is a unique model to study CRC tumorigenesis. We performed whole exome sequencing in 32 fresh frozen tumor lesions from 15 patients with sporadic synchronous CRC to compare their genetic alterations. This approach identified ubiquitously mutated genes in the range from 0.34% to 4.22% and from 0.8% to 7.0% in non-hypermutated tumors and hypermutated tumors, respectively, in a single patient. We show that both ubiquitously mutated genes and candidate cancer genes from different tumors in the same patient mutated at different sites. Consistently, obvious differences in somatic copy number variations (SCNV) were found in most patients with non-hypermutated tumor lesions, which had ubiquitous copy number amplification rates ranging from 0% to 8.8% and ubiquitous copy number deletion rates ranging from 0% to 8.2%. Hypermutated lesions were nearly diploid with 0% to 18.8% common copy number aberrations. Accordingly, clonal structures, altered signaling pathways, and druggable genes in a single patient with synchronous CRC varied significantly. Taken together, the disparate SCNVs and mutations in synchronous CRC supported the field effect theory of tumorigenesis. Moreover, the intertumor heterogeneity of synchronous CRCs implies that analysis of all tumor lesions from the same patient is necessary for appropriate clinical treatment decisions. This article is protected by copyright. All rights reserved.
from #ORL-AlexandrosSfakianakis via ola Kala on Inoreader http://ift.tt/2hfsQPM
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου